论文研究入侵检测中一种节约内存的多模式匹配算法.pdf
核函数是SVM的关键技术,核函数的选择将影响着支持向量机的学习能力和泛化能力。各个普通核函数各有利弊,在分析各个普通核函数的基础上,采用了一种新的组合核函数,它既具有很好的泛化能力,也具有很好的学习能力,并将其构造的支持向量机应用到网络安全的风险评估中,与普通核函数构造的支持向量机的评估效果进行比较。结果表明组合核函数支持向量机不仅提高了分类速度,而且具有较高的分类精度。
核函数是SVM的关键技术,核函数的选择将影响着支持向量机的学习能力和泛化能力。各个普通核函数各有利弊,在分析各个普通核函数的基础上,采用了一种新的组合核函数,它既具有很好的泛化能力,也具有很好的学习能力,并将其构造的支持向量机应用到网络安全的风险评估中,与普通核函数构造的支持向量机的评估效果进行比较。结果表明组合核函数支持向量机不仅提高了分类速度,而且具有较高的分类精度。