谐波能量谱特征向量的高光谱影像Bayes分类
对于高光谱影像存在高维非线性、数据冗余多、纯训练样本难以提取等不足,引入频率域空间的谐波分析(harmonicanalysis,HA)理论并提出了一种高光谱影像的HA-Bayes监督分类方法。该方法在保持高光谱数据空—谱特性不变的情况下,从光谱维角度分析不同分解层的影像光谱谐波特征,将高光谱影像变换成由谐波能量谱组成的频率域特征矢量信息。通过建立谐波能量谱特征向量的先验知识,实现Bayes准则下谐波能量谱特征矢量信息判别与分类,最终实现高光谱影像分类。将此方法应用到ROSIS高光谱影像分类时获得的分类总体精度达85.5%,Kappa系数也达到了0.812。进一步实验也证明了频率域的谐波分析在