获得从一个完备度量空间到一个正规锥度量空间上的非紧值锥度量半连续集值映射的连续点集的性质,通过构造第二纲集的方法,得到了从完备度量空间到正规锥度量空间上的不具紧值的锥度量上(下)半连续集值映射的下(上)半连续点构成的集合是定义域的稠密剩余集,即锥度量上(下)半连续集值映射是通有下(上)半连续的或者说是通有连续的.也即是说在Baire纲意义下锥度量半连续集值映射在绝大多数点处是连续的,或者说是"基本上"连续的.该结果对一些非线性问题解的通有稳定性研究条件的减弱提供了一定的理论指导.