基于径向基函数神经网络的网络流量识别模型
提出了一种基于径向基函数神经网络的网络流量识别方法。根据实际网络中的流量数据,建立了一个基于RBF神经网络的流量识别模型。先介绍了RBF神经网络的结构设计及学习算法,针对RBF神经网络在隐节点过多的情况下算法过于复杂的缺点,采用了优化的算法计算隐含层节点。仿真实验证明,该模型具有较好的准确率、低复杂度、高识别效果和良好的自适应性。
提出了一种基于径向基函数神经网络的网络流量识别方法。根据实际网络中的流量数据,建立了一个基于RBF神经网络的流量识别模型。先介绍了RBF神经网络的结构设计及学习算法,针对RBF神经网络在隐节点过多的情况下算法过于复杂的缺点,采用了优化的算法计算隐含层节点。仿真实验证明,该模型具有较好的准确率、低复杂度、高识别效果和良好的自适应性。