深度卷积网络压缩算法在焊缝识别中的应用
传统图像识别算法识别模型单一且易受外部光照条件干扰,深度卷积网络模型虽然识别率高,但计算量大,设备成本高,因此提出基于深度同或卷积网络的改进型压缩算法。首先介绍了焊缝识别系统的组成和经典卷积神经网络模型,然后阐述了改进型的卷积网络压缩算法,包括权值更新算法和权值补偿算法,最后在自制数据集和仿真平台上进行了数据实验。研究结果表明,所提算法具有识别率高、模型小、适应性强和识别模型多样化的优点,可应用于焊接现场对焊缝中心的识别。
传统图像识别算法识别模型单一且易受外部光照条件干扰,深度卷积网络模型虽然识别率高,但计算量大,设备成本高,因此提出基于深度同或卷积网络的改进型压缩算法。首先介绍了焊缝识别系统的组成和经典卷积神经网络模型,然后阐述了改进型的卷积网络压缩算法,包括权值更新算法和权值补偿算法,最后在自制数据集和仿真平台上进行了数据实验。研究结果表明,所提算法具有识别率高、模型小、适应性强和识别模型多样化的优点,可应用于焊接现场对焊缝中心的识别。