研究论文一种基于数据挖掘的隐私保护方法.pdf
在数据挖掘隐私保护进行协作数据分析时,部分数据集可能分属不同的数据对象,处理时就需要采取不同的数据失真方法.提出了一组全新的数据失真优化策略,通过将属性划分与奇异值分解法(SVD)、非负矩阵因子分解法(NMF)、离散小波变换法(DWT)相结合,运用4种方案对隐私保护原始数据集的子矩阵进行扰动,并用一些衡量指标来衡量这些策略的效果;利用基于支持向量机(SVM)的二元分类来进行数据实用性的检测.结果表明与数据失真单策略相比,新提出的方案在实现数据隐私和数据实用性的良好平衡方面效果十分显著,为协作数据分析提供了可行性解决方案.