论文研究基于加速遗传算法的选择性支持向量机集成.pdf
为有效提升支持向量机的泛化性能,提出基于加速遗传算法的选择性支持向量机集成。通过Bootstrap技术产生并训练得到多个独立子SVM,基于负相关学习理论构造适应度函数,提高子SVM的泛化性能,并增大其之间差异度。利用加速遗传算法计算各子SVM在加权平均中的最优权重,然后选择权值大于一定阈值的部分SVM进行加权集成。实验结果表明,该算法是一种有效的集成方法,能进一步提高SVM的集成效率和泛化性能。
为有效提升支持向量机的泛化性能,提出基于加速遗传算法的选择性支持向量机集成。通过Bootstrap技术产生并训练得到多个独立子SVM,基于负相关学习理论构造适应度函数,提高子SVM的泛化性能,并增大其之间差异度。利用加速遗传算法计算各子SVM在加权平均中的最优权重,然后选择权值大于一定阈值的部分SVM进行加权集成。实验结果表明,该算法是一种有效的集成方法,能进一步提高SVM的集成效率和泛化性能。