基于改进DELSSVM模型的边坡变形预测
针对目前最小二乘支持向量机(LSSVM)在预测算法中存在的不足,通过改变差分演化算法(DE)中的缩放因子个数、杂交概率的个数和变异策略来建立改进DE-LSSVM预测模型,利用某矿山的边坡观测数据。结果表明,基于改进DE-LSSVM预测模型有较优的预测能力。
针对目前最小二乘支持向量机(LSSVM)在预测算法中存在的不足,通过改变差分演化算法(DE)中的缩放因子个数、杂交概率的个数和变异策略来建立改进DE-LSSVM预测模型,利用某矿山的边坡观测数据。结果表明,基于改进DE-LSSVM预测模型有较优的预测能力。