论文研究 基于PCA和BP神经网络的股价预测模型。
基于主成分分析(PCA)和反向传播神经网络,建立库存预测模型,以云南白药(000538)为例,从库存技术分析中选择29个指标,降维后输入神经网络。通过对不同参数数据实验中均方误差(MSE)和均方绝对误差(MAE)的比较和分析,进一步确定网络的隐层节点数量,学习速率,激活功能和训练功能。 最后,获得了具有稳定性和准确性的模型。
基于主成分分析(PCA)和反向传播神经网络,建立库存预测模型,以云南白药(000538)为例,从库存技术分析中选择29个指标,降维后输入神经网络。通过对不同参数数据实验中均方误差(MSE)和均方绝对误差(MAE)的比较和分析,进一步确定网络的隐层节点数量,学习速率,激活功能和训练功能。 最后,获得了具有稳定性和准确性的模型。