基于模糊证据理论的多特征目标融合检测算法
提出了一种基于平方证据权重的模糊证据组合方法,并应用于弱小目标多特征融合检测算法中,采用了证据理论中的基本概率分配函数来描述判决结果的不确定性,首先提取检测图像的局部灰度均值对比度、局部梯度均值对比度、局部差值和局部熵四个特征,然后对特征进行归一化,再对其进行模糊化并根据先验知识和测量统计的结果对目标各特征值所取空间和待识别目标假设集进行基本概率分配,接着采用自适应加权融合的方法得到目标的基本可信度,最后采用基于博弈概率分布的决策规则得到检测后的目标图像。实验结果表明,该算法能在较大程度上降低目标检测过程中的不确定性,提高系统的检测性能。