基于卷积神经网络的单幅图像超分辨
与传统的超分辨算法相比, 基于卷积神经网络的超分辨算法具有较大优势, 但仍存在训练时间较长、重建图像纹理不够清晰等问题。基于此, 在原有的卷积神经网络超分辨重建算法基础上进行了以下优化:放弃原有的修正线性单元函数, 改用新的激活函数; 改变网络结构, 图像重建由最后的反卷积上采样来实现; 采用自适应矩估计优化算法替换原本的随机梯度下降优化算法。分别在Set5和Set14测试集上进行对比实验, 实验结果表明, 改进算法在较少的训练时间下, 峰值信噪比最大提高了2.33 dB, 纹理更加清晰, 边缘更加完整, 重建效果更好。