基于最小类平均绝对偏差算法的遥感图像分割
针对二维Otsu及其改进算法分割直方图非高斯分布的遥感图像效果较差等问题,提出了一种基于最小类平均绝对偏差的遥感图像分割算法(MCMAD)。利用对角线投影法把遥感图像的二维直方图转化为一维直方图,从而降低计算复杂度;在不同阈值下计算一维直方图相应类中像素出现的概率和类中像素灰度的期望值;遍历一维直方图的所有阈值,得到不同阈值对应的类平均绝对偏差,将最小类平均绝对偏差对应的阈值作为最佳阈值分割点。实验结果表明,与二维Otsu及其改进算法相比,MCMAD算法不仅能够很好的分割直方图为高斯分布的遥感图像,而且改善了直方图为拉普拉斯分布的遥感图像分割效果。此外,新算法的时间消耗也很低。