论文研究面向软件缺陷个数预测的混合式特征选择方法.pdf
针对软件缺陷数据集中不相关特征和冗余特征会降低软件缺陷个数预测模型的性能的问题,提出了一种面向软件缺陷个数预测的混合式特征选择方法——HFSNFP。首先,利用ReliefF算法计算每个特征与缺陷个数之间的相关性,选出相关性最高的m个特征;然后,基于特征之间的关联性利用谱聚类对这m个特征进行聚类;最后,利用基于包裹式特征选择思想从每个簇中依次挑选最相关的特征形成最终的特征子集。实验结果表明,相比于已有的五种过滤式特征选择方法,HFSNFP方法在提高预测率的同时降低了误报率,且G-measure与RMSE度量值更佳;相比于已有的两种包裹式特征选择方法,HFSNFP方法在保证缺陷个数预测性能的同时可