论文研究 FRBF神经网络分类器设计新方法.pdf
提出了一种结合模糊径向基函数网络和稀疏V-SVM的二分类器构建方法。FRBF初始网络中的RBF隶属度函数中心由随机抽取的样本确定,而RBF隶属度函数的宽度由样本各个属性的分布方差确定。根据FRBF网络输出为模糊基函数线性组合的特点,在后件参数学习中引入具有结构风险最小化和属性选择功能的稀疏V-SVM方法,在对输出层的参数进行学习的同时进行模糊基函数的约简。若干UCI标准数据集分类测试结果验证了该分类器的有效性。
提出了一种结合模糊径向基函数网络和稀疏V-SVM的二分类器构建方法。FRBF初始网络中的RBF隶属度函数中心由随机抽取的样本确定,而RBF隶属度函数的宽度由样本各个属性的分布方差确定。根据FRBF网络输出为模糊基函数线性组合的特点,在后件参数学习中引入具有结构风险最小化和属性选择功能的稀疏V-SVM方法,在对输出层的参数进行学习的同时进行模糊基函数的约简。若干UCI标准数据集分类测试结果验证了该分类器的有效性。