邻域保持嵌入(NeighborhoodPreservingEmbedding,NPE),作为局部线性嵌入(LocallyLinearEmbedding,LLE)的线性化版本,由于在映射前后保持了数据的局部几何结构并得到了原始数据的子空间描述,在模式识别领域具有较强的应用价值。但作为非监督处理算法,在具体的模式分类中有一定局限性,提出一种NPE的改进算法——半监督判别邻域嵌入(SSDNE)算法,引入标记后样本点的类别信息,并在正则项中引入样本的流形结构,最大化标记样本点的类间信息和类内信息。既增加了算法的辨别能力又减少了监督算法中对样本点进行全标记的工作量。在ORL和YaleB人脸库上的