基于多目标优化的免疫遗传算法在Matlab环境中的实现.pdf
多目标优化的免疫遗传算法,通常多目标问题中各个目标函数不可能找到使每个函数都同时满意的解,而只能是在各目标函数之间进行协调折衷[1]。在过去的一段时间里,国内外学者提出了许多的多目标优化算法。如文献[2]提出了SPEA充分利用pareto最优解的概念,将种群的最优个体储存在种群外,通过不断更新而获得pareto最优解,但该方法获得在各个子目标都同时达到最少值的pareto最优解所在区域内,所获pareto最优解较少;
多目标优化的免疫遗传算法,通常多目标问题中各个目标函数不可能找到使每个函数都同时满意的解,而只能是在各目标函数之间进行协调折衷[1]。在过去的一段时间里,国内外学者提出了许多的多目标优化算法。如文献[2]提出了SPEA充分利用pareto最优解的概念,将种群的最优个体储存在种群外,通过不断更新而获得pareto最优解,但该方法获得在各个子目标都同时达到最少值的pareto最优解所在区域内,所获pareto最优解较少;