针对当前基于随机集的多扩展目标跟踪算法存在计算量大、量测划分不准确和跟踪误差大的问题,在PHD滤波基础上提出一种基于均值漂移(Mean Shift)迭代的新生未知多扩展目标跟踪算法.首先,对聚类后量测数据进行关联,得到新生目标状态,解决目标新生问题;然后,通过Mean Shift迭代获得目标量测集质心,将扩展目标的多量测问题转化为点量测处理;最后,给出其粒子实现方式.仿真实验表明,所提出的算法可以降低跟踪复杂度,提高跟踪效率,在交叉时刻具有稳定的跟踪性能。