基于信息融合和M RVM的变压器故障诊断方法

zyg52090 13 0 PDF 2021-02-19 00:02:11

针对仅以油中溶解气体数据为主要依据的变压器故障诊断方法信息量不足以及传统证据理论的缺陷问题,研究了基于信息融合和多分类相关向量机(M-RVM)的变压器故障诊断模型。首先,将油中溶解气体分析数据与电气试验数据作为诊断模型的输入特征量向量,更真实地反映变压器的故障信息。然后,采用4个M-RVM作为分类器,对故障进行初步诊断,并将诊断结果分别转化为证据融合所需证据体,同时引入兰式距离函数与光谱角余弦函数对证据体进行修正。最后,采用改进冲突再分配策略进行决策融合,避免融合过程中出现证据互相矛盾的现象。对比分析结果表明,基于多源信息融合的变压器诊断模型相较单一特征参数诊断以及单一诊断算法具有更高的诊断准

用户评论
请输入评论内容
评分:
暂无评论