K 匿名隐私保护模型中不确定性数据的建模问题研究

u78574 13 0 PDF 2021-02-23 09:02:25

建模是不确定性数据管理的基础,K-匿名隐私保护模型中不确定性数据有其特殊性:它是人为泛化后的不确定性数据,泛化后的每个实例还原成泛化前元组的概率是相等的。由于其特殊性,以往针对非人为造成不确定性的数据建模方法已经不能简单地用于描述K-匿名隐私保护模型中不确定性数据。为了描述K-匿名隐私保护模型中不确定性数据,本文提出几种针对它的新建模方法:Kattr模型使用attrib-ute-ors方法来描述K-匿名数据中准标识符属性值的不确定性;Ktuple模型把K-匿名表不确定属性值看成是一个关系值,对关系值使用tuple-ors方法来描述;Kupperlower模型把K-匿名表泛化值范围分开成两个字段

K 匿名隐私保护模型中不确定性数据的建模问题研究

用户评论
请输入评论内容
评分:
暂无评论