基于小波多尺度和熵在图像字符特征提取方法的改进

zx97145 16 0 doc 2020-12-13 00:12:35

消费类电子论文基于小波多尺度和熵在图像字符特征提取方法的改进摘要:提出了一种基于小波和熵提取图像字符特征的方法。该方法利用小波变换对图像字符进行多尺度分解,用marr零交叉边缘检测算子提取边缘;用基于判别熵最小化提取每一尺度图像的边界特征,小波的“数字显微镜”的优点与熵能确切地表达各类的交叠状况且能直接表达错误率的特征相结合。与其它方法相比,该方法提取的特征向量稳定、识别率高、算法快,非常有利于分类,且特征提取的方法有人类视觉的特点。关键词:多尺度分析Marr边缘检测算子判别熵特征提取在线签名验证是通过计算机采集和验证个人签名,从而实现无纸化办公的一种技术[1]。其中,从采集到的视频图像中提取有效的字符特片是在线签名验证系统的核心步骤。随着计算机和模式识别技术的迅速发展,出现了很多提取字符特征的方案,最具代表性的有边缘描述法和矩描述法[2]。描述边缘形状的方法可用曲线拟合和傅立叶描述子方法。傅立叶描述子虽较好地描述了一封闭的图像轮廓,但其特征很多,噪声和量化误差对具有较低幅值的系数影响较大。当用FFT计算傅立叶系数,必须将其边界点的长度修成2的整数次幂,且其描述不具有三个(方向、位置、大小)不变性,不能直接用于目标识别,必须进行复杂的变换。这些都影响了它的使用。矩描述法就是利用图像灰度分布的各阶矩描述图像灰度分布的特征。矩特征是定义在整个图像空间上的一个二重积分,它同样不具有三个不变性,使用时必须进行归一化处理。不变矩只是一种旋转归一化方法,必须结合大小,位置归一化处理才有三个不变性。图1虽然用这些特征进行图像识别取得了较为满意的效果,但是,这些特征的定义都是相当复杂的,运算量很大,并且与人类认知的机理也是完全不同的,不能直观地理解。本文提出了一种将统计特征与结构特征相结合的新思路,对字符图像进行小波

用户评论
请输入评论内容
评分:
暂无评论