论文研究一种新的粒子群优化聚类方法.pdf
针对K-均值聚类方法受初始聚类中心影响,容易陷入局部最优解的问题。提出了一种新的粒子群优化聚类方法,该聚类方法采用改进的交叉、变异算子,使群体粒子保持品种的多样性和优良性,减小随机初始聚类中心的影响,同时结合粒子群优化算法,增加粒子群的全局搜索能力。实验结果表明,提出的方法在稳定性和分类准确率上都有所提高。
针对K-均值聚类方法受初始聚类中心影响,容易陷入局部最优解的问题。提出了一种新的粒子群优化聚类方法,该聚类方法采用改进的交叉、变异算子,使群体粒子保持品种的多样性和优良性,减小随机初始聚类中心的影响,同时结合粒子群优化算法,增加粒子群的全局搜索能力。实验结果表明,提出的方法在稳定性和分类准确率上都有所提高。