为提高多目标粒子群算法的局部搜索能力,提出了一种模糊学习子群多目标粒子群算法(FLSMOPSO)。在搜索过程中,每个粒子模糊自适应学习生成不确定的p个粒子形成一个子群而不是只产生一个新粒子,然后在其中选择模糊满意解作为其下一代新粒子。对四个典型测试函数的实验结果表明,新算法比NSGAⅡ和MOPSO两种经典多目标优化算法有显著的优越性。