格兰杰因果关系(Granger causality)是以统计假设检验为基础的,这一观点认为因变量能够帮助目标变量进行预测。更具体地说,如果根据变量x和变量y的过去值的y的自回归模型比仅基于y的过去值的y的自回归模型有更准确的预测结果,那么变量x与变量y满足格兰杰因果关系。该过程中同样采用了BIC方式来迭代获取用于构建最优模型所需要的时间序列过去时刻的长度(lag)