支持向量机(SVM)是在统计学习理论的基础上发展起来的新一代学习算法,该算法在文本分类、手写识别、图像分类、生物信息学等领域中获得了较好的应用。本书是第一本支持向量机方面的导论型读物。它从机器学习算法的基本问题开始,循序渐进地介绍相关的背景知识,包括线性分类器、核函数特征空间、推广性理论和优化理论,从而很自然地引出了支持向量机的算法。书的末尾还详细讨论了一系列支持向量机的重要应用以及实现的技巧。该书提供的大量相关文献以及网站链接为进一步学习提供了有效线索,有助于读者及时跟踪该领域的最新信息。本书可作为计算机、自动化、机电工程、应用数学等专业的研究生教材,也可作为神经网络、机器学习、数据挖掘等课