随着商业竞争形式的日益严峻,企业需要不断寻找提高利润率、降低成本、提高产出价值的有效方法,而数据化运营恰好是满足企业这一需求的关键武器。数据化运营包含了运营和数据两种要素,前者需要较多的业务经验,而后者对数据分析提出了更高的要求。只有把二者结合起来,在技能、经验和技术的支持下,数据化运营才能在企业内部真正落地、生根、发芽。 对数据化运营而言,各企业普遍关注的结构化数据分析、挖掘的场景非常丰富,例如销售预测、会员生命周期维护、商品结构分析等,这些普遍的共同认知为本书提供了接地气的基础;但除了这些“传统内容”外,还有很多非结构化的数据主题,它们在数据化运营过程中的作用越来越重要,例如主题挖掘、图