IMAGE and VIDEO COMPRESSION for MULTIMEDIA ENGINEERING Fundamentals, Algorithms,
Contents
Section I Fundamentals
Chapter 1 Introduction
1.1 Practical Needs for Image and Video Compression
1.2 Feasibility of Image and Video Compression
1.2.1 Statistical Redundancy
1.2.2 Psychovisual Redundancy
1.3 Visual Quality Measurement
1.3.1 Subjective Quality Measurement
1.3.2 Objective Quality Measurement
1.4 Information Theory Results
1.4.1 Entropy
1.4.2 Shannon’s Noiseless Source Coding Theorem
1.4.3 Shannon’s Noisy Channel Coding Theorem
1.4.4 Shannon’s Source Coding Theorem
1.4.5 Information Transmission Theorem
1.5 Summary
1.6 Exercises
References
Chapter 2 Quantization
2.1 Quantization and the Source Encoder
2.2 Uniform Quantization
2.2.1 Basics
2.2.2 Optimum Uniform Quantizer
2.3 Nonuniform Quantization
2.3.1 Optimum (Nonuniform) Quantization
2.3.2 Companding Quantization
2.4 Adaptive Quantization
2.4.1 Forward Adaptive Quantization
2.4.2 Backward Adaptive Quantization
2.4.3 Adaptive Quantization with a One-Word Memory
2.4.4 Switched Quantization
2.5 PCM
2.6 Summary
2.7 Exercises
References
Chapter 3 Differential Coding
3.1 Introduction to DPCM
3.1.1 Simple Pixel-to-Pixel DPCM
3.1.2 General DPCM Systems
3.2 Optimum Linear Prediction
(C) 2000 by CRC Press LLC
3.2.1 Formulation
3.2.2 Orthogonality Condition and Minimum Mean Square Error
3.2.3 Solution to Yule-Walker Equations
3.3 Some Issues in the Implementation of DPCM
3.3.1 Optimum DPCM System
3.3.2 1-D, 2-D, and 3-D DPCM
3.3.3 Order of Predictor
3.3.4 Adaptive Prediction
3.3.5 Effect of Transmission Errors
3.4 Delta Modulation
3.5 Interframe Differential Coding
3.5.1 Conditional Replenishment
3.5.2 3-D DPCM
3.5.3 Motion-Compensated Predictive Coding
3.6 Information-Preserving Differential Coding
3.7 Summary
3.8 Exercises
References
Chapter 4 Transform Coding
4.1 Introduction
4.1.1 Hotelling Transform
4.1.2 Statistical Interpretation
4.1.3 Geometrical Interpretation
4.1.4 Basis Vector Interpretation
4.1.5 Procedures of Transform Coding
4.2 Linear Transforms
4.2.1 2-D Image Transformation Kernel
4.2.2 Basis Image Interpretation
4.2.3 Subimage Size Selection
4.3 Transforms of Particular Interest
4.3.1 Discrete Fourier Transform (DFT)
4.3.2 Discrete Walsh Transform (DWT)
4.3.3 Discrete Hadamard Transform (DHT)
4.3.4 Discrete Cosine Transform (DCT)
4.3.5 Performance Comparison
4.4 Bit Allocation
4.4.1 Zonal Coding
4.4.2 Threshold Coding
4.5 Some Issues
4.5.1 Effect of Transmission Errors
4.5.2 Reconstruction Error Sources
4.5.3 Comparison Between DPCM and TC
4.5.4 Hybrid Coding
4.6 Summary
4.7 Exercises
References
Chapter 5 Variable-Length Coding: Information Theory Results (II)
5.1 Some Fundamental Results
(C) 2000 by CRC Press LLC
5.1.1 Coding an Information Source
5.1.2 Some Desired Characteristics
5.1.3 Discrete Memoryless Sources
5.1.4 Extensions of a Discrete Memoryless Source
5.2 Huffman Codes
5.2.1 Required Rules for Optimum Instantaneous Codes
5.2.2 Huffman Coding Algorithm
5.3 Modified Huffman Codes
5.3.1 Motivation
5.3.2 Algorithm
5.3.3 Codebook Memory Requirement
5.3.4 Bounds on Average Codeword Length
5.4 Arithmetic Codes
5.4.1 Limitations of Huffman Coding
5.4.2 Principle of Arithmetic Coding
5.4.3 Implementation Issues
5.4.4 History
5.4.5 Applications
5.5 Summary
5.6 Exercises
References
Chapter 6 Run-Length and Dictionary Coding: Information Theory Results (III)
6.1 Markov Source Model
6.1.1 Discrete Markov Source
6.1.2 Extensions of a Discrete Markov Source
6.1.3 Autoregressive (AR) Model
6.2 Run-Length Coding (RLC)
6.2.1 1-D Run-Length Coding
6.2.2 2-D Run-Length Coding
6.2.3 Effect of Transmission Error and Uncompressed Mode
6.3 Digital Facsimile Coding Standards
6.4 Dictionary Coding
6.4.1 Formulation of Dictionary Coding
6.4.2 Categorization of Dictionary-Based Coding Techniques
6.4.3 Parsing Strategy
6.4.4 Sliding Window (LZ77) Algorithms
6.4.5 LZ78 Algorithms
6.5 International Standards for Lossless Still Image Compression
6.5.1 Lossless Bilevel Still Image Compression
6.5.2 Lossless Multilevel Still Image Compression
6.6 Summary
6.7 Exercises
References
Section II Still Image Compression
Chapter 7 Still Image Coding Standard: JPEG
7.1 Introduction
7.2 Sequential DCT-Based Encoding Algorithm
(C) 2000 by CRC Press LLC
7.3 Progressive DCT-Based Encoding Algorithm
7.4 Lossless Coding Mode
7.5 Hierarchical Coding Mode
7.6 Summary
7.7 Exercises
References
Chapter 8 Wavelet Transform for Image Coding
8.1 Review of the Wavelet Transform
8.1.1 Definition and Comparison with Short-Time Fourier Transform
8.1.2 Discrete Wavelet Transform
8.2 Digital Wavelet Transform for Image Compression
8.2.1 Basic Concept of Image Wavelet Transform Coding
8.2.2 Embedded Image Wavelet Transform Coding Algorithms
8.3 Wavelet Transform for JPEG-2000
8.3.1 Introduction of JPEG-2000
8.3.2 Verification Model of JPEG-2000
8.4 Summary
8.5 Exercises
References
Chapter 9 Nonstandard Image Coding
9.1 Introduction
9.2 Vector Quantization
9.2.1 Basic Principle of Vector Quantization
9.2.2 Several Image Coding Schemes with Vector Quantization
9.2.3 Lattice VQ for Image Coding
9.3 Fractal Image Coding
9.3.1 Mathematical Foundation
9.3.2 IFS-Based Fractal Image Coding
9.3.3 Other Fractal Image Coding Methods
9.4 Model-Based Coding
9.4.1 Basic Concept
9.4.2 Image Modeling
9.5 Summary
9.6 Exercises
References
Section III Motion Estimation and Compression
Chapter 10 Motion Analysis and Motion Compensation
10.1 Image Sequences
10.2 Interframe Correlation
10.3 Frame Replenishment
10.4 Motion-Compensated Coding
10.5 Motion Analysis
10.5.1 Biological Vision Perspective
10.5.2 Computer Vision Perspective
10.5.3 Signal Processing Perspective
(C) 2000 by CRC Press LLC
10.6 Motion Compensation for Image Sequence Processing
10.6.1 Motion-Compensated Interpolation
10.6.2 Motion-Compensated Enhancement
10.6.3 Motion-Compensated Restoration
10.6.4 Motion-Compensated Down-Conversion
10.7 Summary
10.8 Exercises
References
Chapter 11 Block Matching
11.1 Nonoverlapped, Equally Spaced, Fixed Size, Small Rectangular Block Matching
11.2 Matching Criteria
11.3 Searching Procedures
11.3.1 Full Search
11.3.2 2-D Logarithm Search
11.3.3 Coarse-Fine Three-Step Search
11.3.4 Conjugate Direction Search
11.3.5 Subsampling in the Correlation Window
11.3.6 Multiresolution Block Matching
11.3.7 Thresholding Multiresolution Block Matching
11.4 Matching Accuracy
11.5 Limitations with Block Matching Techniques
11.6 New Improvements
11.6.1 Hierarchical Block Matching
11.6.2 Multigrid Block Matching
11.6.3 Predictive Motion Field Segmentation
11.6.4 Overlapped Block Matching
11.7 Summary
11.8 Exercises
References
Chapter 12 PEL Recursive Technique
12.1 Problem Formulation
12.2 Descent Methods
12.2.1 First-Order Necessary Conditions
12.2.2 Second-Order Sufficient Conditions
12.2.3 Underlying Strategy
12.2.4 Convergence Speed
12.2.5 Steepest Descent Method
12.2.6 Newton-Raphson’s Method
12.2.7 Other Methods
12.3 Netravali-Robbins Pel Recursive Algorithm
12.3.1 Inclusion of a Neighborhood Area
12.3.2 Interpolation
12.3.3 Simplification
12.3.4 Performance
12.4 Other Pel Recursive Algorithms
12.4.1 The Bergmann Algorithm (1982)
12.4.2 The Bergmann Algorithm (1984)
12.4.3 The Cafforio and Rocca Algorithm
12.4.4 The Walker and Rao Algorithm
(C) 2000 by CRC Press LLC
12.5 Performance Comparison
12.6 Summary
12.7 Exercises
References
Chapter 13 Optical Flow
13.1 Fundamentals
13.1.1 2-D Motion and Optical Flow
13.1.2 Aperture Problem
13.1.3 Ill-Posed Inverse Problem
13.1.4 Classification of Optical Flow Techniques
13.2 Gradient-Based Approach
13.2.1 The Horn and Schunck Method
13.2.2 Modified Horn and Schunck Method
13.2.3 The Lucas and Kanade Method
13.2.4 The Nagel Method
13.2.5 The Uras, Girosi, Verri, and Torre Method
13.3 Correlation-Based Approach
13.3.1 The Anandan Method
13.3.2 The Singh Method
13.3.3 The Pan, Shi, and Shu Method
13.4 Multiple Attributes for Conservation Information
13.4.1 The Weng, Ahuja, and Huang Method
13.4.2 The Xia and Shi Method
13.5 Summary
13.6 Exercises
References
Chapter 14 Further Discussion and Summary on 2-D Motion Estimation
14.1 General Characterization
14.1.1 Aperture Problem
14.1.2 Ill-Posed Inverse Problem
14.1.3 Conservation Information and Neighborhood Information
14.1.4 Occlusion and Disocclusion
14.1.5 Rigid and Nonrigid Motion
14.2 Different Classifications
14.2.1 Deterministic Methods vs. Stochastic Methods
14.2.2 Spatial Domain Methods vs. Frequency Domain Methods
14.2.3 Region-Based Approaches vs. Gradient-Based Approaches
14.2.4 Forward vs. Backward Motion Estimation
14.3 Performance Comparison Among Three Major Approaches
14.3.1 Three Representatives
14.3.2 Algorithm Parameters
14.3.3 Experimental Results and Observations
14.4 New Trends
14.4.1 DCT-Based Motion Estimation
14.5 Summary
14.6 Exercises
References
(C) 2000 by CRC Press LLC
Section IV Video Compression
Chapter 15 Fundamentals of Digital Video Coding
15.1 Digital Video Representation
15.2 Information Theory Results (IV): Rate Distortion Function of Video Signal
15.3 Digital Video Formats
15.4 Current Status of Digital Video/Image Coding Standards
15.5 Summary
15.6 Exercises
References
Chapter 16 Digital Video Coding Standards — MPEG-1/2 Video
16.1 Introduction
16.2 Features of MPEG-1/2 Video Coding
16.2.1 MPEG-1 Features
16.2.2 MPEG-2 Enhancements
16.3 MPEG-2 Video Encoding
16.3.1 Introduction
16.3.2 Preprocessing
16.3.3 Motion Estimation and Motion Compensation
16.4 Rate Control
16.4.1 Introduction of Rate Control
16.4.2 Rate Control of Test Model 5 (TM5) for MPEG-2
16.5 Optimum Mode Decision
16.5.1 Problem Formation
16.5.2 Procedure for Obtaining the Optimal Mode
16.5.3 Practical Solution with New Criteria for the Selection of Coding Mode
16.6 Statistical Multiplexing Operations on Multiple Program Encoding
16.6.1 Background of Statistical Multiplexing Operation
16.6.2 VBR Encoders in StatMux
16.6.3 Research Topics of StatMux
16.7 Summary
16.8 Exercises
References
Chapter 17 Application Issues of MPEG-1/2 Video Coding
17.1 Introduction
17.2 ATSC DTV Standards
17.2.1 A Brief History
17.2.2 Technical Overview of ATSC Systems
17.3 Transcoding with Bitstream Scaling
17.3.1 Background
17.3.2 Basic Principles of Bitstream Scaling
17.3.3 Architectures of Bitstream Scaling
17.3.4 Analysis
17.4 Down-Conversion Decoder
17.4.1 Background
17.4.2 Frequency Synthesis Down-Conversion
(C) 2000 by CRC Press LLC
17.4.3 Low-Resolution Motion Compensation
17.4.4 Three-Layer Scalable Decoder
17.4.5 Summary of Down-Conversion Decoder
17.4.6 DCT-to-Spatial Transformation
17.4.7 Full-Resolution Motion Compensation in Matrix Form
17.5 Error Concealment
17.5.1 Background
17.5.2 Error Concealment Algorithms
17.5.3 Algorithm Enhancements
17.5.4 Summary of Error Concealment
17.6 Summary
17.7 Exercises
References
Chapter 18 MPEG-4 Video Standard: Content-Based Video Coding
18.1 Introduction
18.2 MPEG-4 Requirements and Functionalities
18.2.1 Content-Based Interactivity
18.2.2 Content-Based Efficient Compression
18.2.3 Universal Access
18.2.4 Summary of MPEG-4 Features
18.3 Technical Description of MPEG-4 Video
18.3.1 Overview of MPEG-4 Video
18.3.2 Motion Estimation and Compensation
18.3.3 Texture Coding
18.3.4 Shape Coding
18.3.5 Sprite Coding
18.3.6 Interlaced Video Coding
18.3.7 Wavelet-Based Texture Coding
18.3.8 Generalized Spatial and Temporal Scalability
18.3.9 Error Resilience
18.4 MPEG-4 Visual Bitstream Syntax and Semantics
18.5 MPEG-4 Video Verification Model
18.5.1 VOP-Based Encoding and Decoding Process
18.5.2 Video Encoder
18.5.3 Video Decoder
18.6 Summary
18.7 Exercises
Reference
Chapter 19 ITU-T Video Coding Standards H.261 and H.263
19.1 Introduction
19.2 H.261 Video-Coding Standard
19.2.1 Overview of H.261 Video-Coding Standard
19.2.2 Technical Detail of H.261
19.2.3 Syntax Description
19.3 H.263 Video-Coding Standard
19.3.1 Overview of H.263 Video Coding
19.3.2 Technical Features of H.263
19.4 H.263 Video-Coding Standard Version 2
(C) 2000 by CRC Press LLC
19.4.1 Overview of H.263 Version 2
19.4.2 New Features of H.263 Version 2
19.5 H.263++ Video Coding and H.26L
19.6 Summary
19.7 Exercises
References
Chapter 20 MPEG System — Video, Audio, and Data Multiplexing
20.1 Introduction
20.2 MPEG-2 System
20.2.1 Major Technical Definitions in MPEG-2 System Document
20.2.2 Transport Streams
20.2.3 Transport Stream Splicing
20.2.4 Program Streams
20.2.5 Timing Model and Synchronization
20.3 MPEG-4 System
20.3.1 Overview and Architecture
20.3.2 Systems Decoder Model
20.3.3 Scene Description
20.3.4 Object Description Framework
20.4 Summary
20.5 Exercises
References
用户评论