传统BI的繁杂之处主要体现在两个方面: 第一:技术人员需要花费大量时间准备数据。用于分析的底层数据分布在不同的地方,如果要让这些数据百分百地满足业务需求,那么就需要对数据进行额外的处理,根据传统BI提供的工具建立符合其工具的数据模型,而这个过程根据业务的复杂程度所需的时间在几个月不等。 第二:业务人员基于数据偶得的一些分析需求实现过程复杂。传统BI的模式都是预先了解领导和业务人员的所有业务需求,然后基于这些需求准备数据设计以报表形式展现数据的分析过程,当决策分析者在分析过程中有额外的想法时,基于传统的设计模式,她们还需要和技术人员进行沟通,准备新的数据或者设计新的分析过程,然后才能得到自己想要的分析,这个过程还包括了让技术人员理解自己的需求,所以综上看来整个过 程是相当复杂的。 平台的Data Service模块,具有的分析设计模式和指标影响因素智能分析模块,能够解决以上问题,让技术人员准备数据时无需任何代码和复杂的设置过程,让非IT人员参与开发编程成为可能。 程是相当复杂的。 平台的Data Service模块,具有的分析设计模式和指标影响因素智能分析模块,能够解决以上问题,让技术人员准备数据时无需任何代码和复杂的设置过程,让非IT人员参与开发编程成为可能。