本书以TensorFlow1.2为基础,从基本概念、内部实现和最佳实践等方面深入剖析了TensorFlow。书中首先介绍了TensorFlow设计目标、基本架构、环境准备和基础概念,接着重点介绍了以数据流图为核心的机器学习编程框架的设计原则与核心实现,紧接着还将TensorFlow与深度学习相结合,从理论基础和程序实现这两个方面系统介绍了CNN、GAN和RNN等经典模型,然后深入剖析了TensorFlow运行时核心、通信原理和数据流图计算的原理与实现,最后全面介绍了TensorFlow生态系统的发展。