摘 要:针对当前机动目标跟踪领域中多模型算法存在的问题,提出一种基于粒子滤波的模型自适应机动目标跟踪算法.首先,依据前一时刻每个粒子采用的模型状态和模型间的状态转移概率,实现对当前时刻模型的采样;然后,将采样模型用于对当前粒子的预测,并根据当前时刻得到的量测数据实现对预测粒子权值的度量;最后,通过重采样策略和概率最大化原则完成对模型的合理选择和状态的有效估计.仿真实验验证了该算法的有效性.关键词:机动目标跟踪;粒子滤波;交互式多模型;模型自适应