针对径向基代理模型技术在近似高维问题时预测性能较差的不足,提出一种基于融合核函数的改进径向基代理模型技术。在拉丁超立方设计抽样不均匀的情况下,通过定义一种辅助函数与距离评判标准,提出基于均匀抽样的拉丁超立方设计,并应用于代理模型的构建中;为提高模型预测精度与计算效率,考虑样本点因素,采用局部密集加点、全局均匀选点和最小距离筛选的多策略建模技术构建径向基代理模型;同时,为避免该技术在近似高维问题时可能产生的结构风险,考虑结构因素对预测精度的影响,对逆多二次和立方核函数进行了权重式的融合,构建了基于融合核函数的改进径向基代理模型。利用数值和工程算例进行测试仿真,结果表明该技术不仅满足精度要求,且明