针对深度信念网络(DBN)权值随机初始化易使网络陷入局部最优的问题,在传统DBN模型中引入布谷鸟搜索(CS)算法,提出一种基于CS-DBN的肺部肿瘤图像识别算法。首先,利用CS的全局寻优能力对DBN的初始权值进行优化,并在此基础上进行DBN的逐层预训练;然后,利用反向传播(BP)算法对整个网络进行微调,从而使网络权值达到最优;最后,将CS-DBN应用于肺部肿瘤图像的识别,实验从受限玻尔兹曼机(RBM)训练次数、训练批次大小、DBN隐层层数和隐层节点数四个角度将CS-DBN与传统DBN进行比较,以验证该算法的可行性和有效性。