暂无评论
在seq2seq模型中,解码器只能隐式地从编码器的最终状态中选择相应的信息。然而,注意力机制可以将这种选择过程显式地建模。
记住 请记住,这是一个可以分散注意力的工具,供以后使用。您将其绑定到热键(默认情况下为⌥⎵),每当出现意外情况时(例如您突然意识到需要储备牛奶),您可以按下热键,然后输入buy milk +1h并按回
图注意力网络(GAT)-PyTorch Velickovic等人的“重现图注意力网络”。 奥利弗·沃威克(Oliver Warwick),帕夫洛斯·派普里斯(Pavlos Piperis),哈利勒·易
图神经网络已经成为深度学习领域最炽手可热的方向之一。作为一种代表性的图卷积网络,Graph Attention Network (GAT) 引入了注意力机制来实现更好的邻居聚合。通过学习邻居的权重,G
注意力机制是一种信息获取的通用机制,应用于从大量源数据中获取特定关键信息而避免对所有数据进行处理的场景。 注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理、语音识别还是自然语言处理的各种
针对RGB-D图像的语义分割问题,提出了一种结合通道注意力机制的RefineNet网络。考虑到网络特征图中各个通道重要性的不同,将通道注意力机制分别引入基本RefineNet的编码器和解码器模块,以增
针对环境背景复杂且包含小目标的遥感图像难以进行精准目标检测的问题,在单阶段检测(SSD)模型的基础上,提出了一种基于注意力和特征融合的单阶段目标检测模型,该模型主要由检测分支和注意力分支组成。首先,在
针对全卷积孪生(SiamFC)网络算法在相似目标共存和目标外观发生显著变化时跟踪失败的问题,提出一种基于注意力机制的在线自适应孪生网络跟踪算法(AAM-Siam)来增强网络模型的判别能力,实现在线学习
深度卷积网络提取的表情特征易受背景、个体身份等因素影响,其与无用特征混合在一起对表情识别造成干扰。针对此问题,提出一种基于注意力模型的面部表情识别算法,该方法基于一个轻量级的卷积神经网络以避免过拟合,
针对全卷积神经网络在图像分割中信息遗失、依赖固定权重导致分割精度低的问题,对U-Net结构进行改进并用于脑肿瘤磁共振(MR)图像的分割。在U-Net收缩路径上用注意力模块,将权重分布到不同尺寸的卷积层
暂无评论