针对优化函数未知的昂贵区间多目标优化, 根据决策空间数据挖掘, 提出了一种基于最近邻法和主成分分析法(Principal component analysis, PCA) 的NSGA-II 算法. 该算法首先通过约束条件将待测解集分为可行解和非可行解, 利用最近邻法对待测解和样本解进行相似性计算, 判断待测解是否满足约束. 然后对于两个解的Pareto 支配性同样利用最近邻法来区分解之间的被支配和非被支配关系. 由于目标空间拥挤距离无法求出, 为此在决策空间利用主成分分析法将K- 均值聚类后的解集降维, 找出待测解的前、后近距离解, 通过决策空间拥挤距离对同序值