暂无评论
环境科学领域中,重金属的浓度预测一直是一个备受关注的研究方向。本文聚焦于探讨极限学习机(Extreme Learning Machine,ELM)与MATLAB工具在重金属浓度预测模型中的协同作用。通
Python implementation of online sequential extreme learning machine OS-ELM
针对基于传统神经网络的变压器故障识别诊断方法存在网络收敛慢、易陷入局部极小点和网络参数难确定的缺点,提出了一种基于极限学习机的电力变压器故障快速识别方法。该方法以变压器油中用于故障类型分析的5种主要溶
极限学习机(ELM)因其高效的训练方式被广泛应用于分类回归,然而不同的输入权值在很大程度上会影响其学习性能。为了进一步提高ELM的学习性能,针对ELM的输入权值进行了研究,充分利用图像局部感知的稀疏性
针对证券指数具有随机性、时变、波动性较大、非线性等特点,传统线性预测方法预测精度低等缺陷,提出了一种基于极限学习机的证券指数预测方法。极限学习机克服了BP神经网络的训练速度慢、过拟合、局部极值等缺陷,
极限学习机ELM不同于传统的神经网络学习算法(如BP算法),是一种高效的单隐层前馈神经网络(SLFNs)学习算法。将极限学习机引入到中文网页分类任务中。对中文网页进行预处理,提取其特性信息,从而形成网
针对在线学习中极限学习机需要事先确定模型结构的问题,提出了兼顾数据增量和结构变化的在线极限学习机算法。算法以在线序列化极限学习机为基础,通过误差变化判断是否新增节点,并利用分块矩阵的广义逆矩阵对新增节
针对采空区煤炭自然发火的预测问题,从温度、标志气体浓度以及钻孔参数3个方面选取了8个相关因素,利用Logistic回归分析从中提取出5个相对重要的因素作为预测模型的输入,运用极限学习机算法进行预测,并
为提高电力负荷预测的准确性,提出蝙蝠算法优化极限学习的电力负荷预测模型.首先收集电力负荷历史数据,然后采用蝙蝠算法对延迟时间和嵌入维以及极限学习的隐含层结点数目进行优化,利用电力负荷历史数据进行重构,
摘要:内核极限学习机(KELM)通过将低维空间中的线性不可分离数据转换为线性可分离的数据,从而增强了ExtremeLearning Machine(ELM)的鲁棒性。 然而,ELM的内部功率参数是随机
暂无评论