Static Timing Analysis For Nanometer Designs
This book serves as a hands-on guide to timing constraints in integrated circuit design. Readers will learn to maximize performance of their IC designs, by specifying timing requirements correctly. Coverage includes key aspects of the design flow impacted by timing constraints, including synthesis, static timing analysis and placement and routing. Concepts needed for specifying timing requirements are explained in detail and then applied to specific stages in the design flow, all within the context of Synopsys Design
>The book covers topics such as cell timing and power modeling; interconnect modeling and analysis, delay calculation, crosstalk, noise and the chip timing verification using static timing analysis. For each of these topics, the book provides a theoretical background as well as detailed examples to elaborate the concepts. The static timing analysis topics covered start from verification of simple blocks useful for a beginner to this field. The topics then extend to complex nanometer designs with in-depth treatment of concepts such as modeling of on-chip variation, clock gating, half-cycle paths, as well as timing of source-synchronous interfaces such as DDR. The impact of crosstalk on timing and noise is covered as is the usage of hierarchical design methodology. This book addresses CMOS logic gates, cell library, timing arcs, waveform slew, cell capacitance, timing modeling, interconnect parasitics and coupling, pre- and post-layout interconnect modeling, delay calculation, specification of timing constraints for analysis of internal paths as well as IO interfaces. Advanced modeling and analysis concepts such as controlled current source timing and noise models for nanometer technologies, power modeling including active and leakage power, crosstalk timing and crosstalk glitch calculation, verification of half-cycle and multi-cycle paths, false paths, synchronous interfaces are also covered. ...展开详情收缩
暂无评论