暂无评论
针对证券指数具有随机性、时变、波动性较大、非线性等特点,传统线性预测方法预测精度低等缺陷,提出了一种基于极限学习机的证券指数预测方法。极限学习机克服了BP神经网络的训练速度慢、过拟合、局部极值等缺陷,
极限学习机ELM不同于传统的神经网络学习算法(如BP算法),是一种高效的单隐层前馈神经网络(SLFNs)学习算法。将极限学习机引入到中文网页分类任务中。对中文网页进行预处理,提取其特性信息,从而形成网
针对在线学习中极限学习机需要事先确定模型结构的问题,提出了兼顾数据增量和结构变化的在线极限学习机算法。算法以在线序列化极限学习机为基础,通过误差变化判断是否新增节点,并利用分块矩阵的广义逆矩阵对新增节
Python implementation of online sequential extreme learning machine OS-ELM
针对采空区煤炭自然发火的预测问题,从温度、标志气体浓度以及钻孔参数3个方面选取了8个相关因素,利用Logistic回归分析从中提取出5个相对重要的因素作为预测模型的输入,运用极限学习机算法进行预测,并
为提高电力负荷预测的准确性,提出蝙蝠算法优化极限学习的电力负荷预测模型.首先收集电力负荷历史数据,然后采用蝙蝠算法对延迟时间和嵌入维以及极限学习的隐含层结点数目进行优化,利用电力负荷历史数据进行重构,
摘要:内核极限学习机(KELM)通过将低维空间中的线性不可分离数据转换为线性可分离的数据,从而增强了ExtremeLearning Machine(ELM)的鲁棒性。 然而,ELM的内部功率参数是随机
针对经典智能算法用于滑坡位移预测时存在的网络结构参数选取复杂、易陷入局部极小等缺陷,提出了基于改进极限学习机ELM(Extreme Learning Machine)的滑坡位移预测模型。在滑坡变形位移
iris数据集机器学习是刚入门学习的一个简单数据集,里面的样本数150条,分为3类,每类50个样本,易于理解,对刚学习机器学习的具有一定帮助。
标记分布学习作为一种新的学习范式,利用最大熵模型构造的专用化算法能够很好地解决某些标记多样性问题,但是计算量巨大。基于此,引入运行速度快、稳定性更高的核极限学习机模型,提出基于核极限学习机的标记分布学
暂无评论