暂无评论
北京师范大学学报自然科学版 一 蝴 强 圭 非负矩阵分解及其在基因表达数据分析中的应用 曹胜玉 刘来福 索藩蕊大学数学秘警学茨察 摘要介绍非负矩阵分解的基本原理及其在生物信息学中基因表达数据分析巾的应
微博网站作为一种流行的社交媒体形式,在为用户提供丰富信息和服务的同时,也带来了信息超载问题。如何利用微博网络为用户推荐有价值的信息,以缓解信息超载问题变得日益重要。根据微博网络的有向性以及建立关注关系
针对现有的基于非负矩阵分解的隐私保护数据挖掘方法中,不区分样本的重要性的不同,对所有样本都进行同样强度扰动的问题进行改进。提出了一种结合样本选择的基于非负矩阵分解的隐私保护分类方法。该方法使用样本选择
基于梅尔频率倒谱系数的非负矩阵分解的音频哈希函数
改进的光谱空间信息约束非负矩阵分解的混合像元分解算法,李华丽,李登刚,本文针对高光谱图像混合像元分解过程中,空间信息利用不足的问题,以及纯净像元不存在时分解精度有所下降的问题,提出了一种改进
为了提高音频数据分类正确率,提出一种通过非负张量分解(NTF)的分类方法.音频信号经过预处理后,提取声学特征和感知特征参数,然后构建非负的3阶音频张量,其各阶分别对应特征、帧、样本;其次,通过NTF得
提出了一种用于人脸识别新的保持拓扑性非负矩阵分解方法。该方法通过将梯度距离最小化来发现人脸模式内在的流型结构。与PCA、LDA和最初的NMF方法相比较,保持拓扑性非负矩阵分解法发现一种嵌入来保留局部拓
为了能够提升分解矩阵的稀疏表达能力, 提出了一种新的基于平滑l0范数的正交子空间非负矩阵分解方法。通过将分解矩阵的正交性及平滑l0范数约束同时引入矩阵分解的目标函数中一起进行优化, 大大降低了计算复杂
传统的高光谱混合像元分解方法仅考虑高光谱图像的几何特性或者丰度的稀疏性,而忽略高光谱数据的光谱空间特性。当原图像中不存在纯净像元时,分解精度将严重下降。为了解决这些问题,提出一种改进的空间信息约束非负
PyTorch中的非负矩阵组合 PyTorch不仅是一个很好的深度学习框架,而且还是矩阵操作和大数据卷积方面的快速工具。 一个很好的例子是 。 在此程序包中,我基于torch.nn.Module在Py
暂无评论