针对传统的图像匹配算法特征点不稳定和匹配时间慢的问题,提出了一种改进的尺度不变特征变换(SIFT)图像匹配算法。首先对传统的Harris角点构造高斯多尺度空间,使角点具备多尺度不变性;然后采用Canny边缘提取算法修饰Harris角点以增加稳定特征点数量;最后构造SIFT特征描述符,计算多幅图像中对应特征点描述子的欧式距离,完成特征点对的匹配。实验结果表明:相比于传统的SIFT算法和SURF算法,研究所提出的方法能够有效地提高特征点匹配精度,减少图像匹配时间。