针对传统的神经网络训练算法收敛速度慢和泛化性能低的缺陷,提出一种新的基于面向对象的自适应粒子群优化算法(OAPSO)用于神经网络的训练。该算法通过改进PSO的编码方式和自适应搜索策略以提高网络的训练速度与泛化性能,并结合Iris和Ionosphere分类数据集进行测试。实验结果表明:基于OAPSO算法训练的神经网络在分类准确率上明显优于BP算法及标准PSO算法,极大地提高了网络泛化能力和优化效果,具有快速全局收敛的性能。