针对基本蝙蝠算法收敛速度慢、易早熟的问题,提出了一种精英交叉二进制蝙蝠算法。该算法借鉴精英策略和遗传算法中的交叉机制,按照一定比例选择蝙蝠群中的精英个体进行交叉,将得到的子蝙蝠群和父蝙蝠群进行混合择优,保证蝙蝠群的多样性和优秀性,提高了全局搜索能力;为提高局部搜索能力,算法在对每个个体计算适应度值时加入贪心策略;另外,通过对蝙蝠群最优解进行动态监测,适时对种群进行柯西变异,使算法具有跳出局部极值的能力。通过对五个实例的仿真计算比较表明,该算法与改进贪心遗传算法、贪心二进制蝙蝠算法和病毒协同蝙蝠算法相比,无论是收敛速度还是寻优能力都表现优异,为求解0-1背包问题提供了一个实用的算法。