提出了一种基于实数编码和目标函数梯度信息的量子遗传算法.该方法用量子比特构成染色体,用实数对量子比特进行编码,用量子旋转门进行染色体更新,用量子非门进行染色体变异.对旋转门的旋转角方向的选择,给出了简易快捷的方法;对旋转角大小的选择,结合了目标函数的梯度信息.该方法将每一量子位看作上下两个并列的基因,每条染色体包含两条并列的基因链,每条基因链代表一个优化解.在染色体数目相同时,可使搜索空间加倍.以函数极值问题和神经网络权值优化问题为例,验证了该方法的有效性.