传统数据挖掘关联规则Apriori算法直接移植到云计算平台,数据挖掘效率虽然有了数量级的提升,但由于需要频繁地扫描事务数据库,增加了系统I/O、内存和通信的开销。提出一种基于矩阵的并行关联规则算法Apriori_MMR。该算法结合数据划分的思想进行并行化改进,简化了生成候选项的连接步骤,仅需对事务数据库扫描两次,同时在计算过程中还能对事务进行压缩,从而进一步提高了算法的性能。通过两种算法在不同数据规模下算法性能的对比分析实验和两种算法在相同数据集不同节点数的对比实验,共同验证了Apriori_MMR的运算效率至少要比Apriori_MR高出两倍左右,且设置的支持度阈值越小,效果愈明显。