针对增强现实对图像匹配算法的高实时性要求,提出了一种基于SUSAN角点检测和SURF特征描述的快速图像匹配算法。利用SUSAN定位特征点,生成特征点主方向和SURF特征描述符,然后运用随机K-D树并结合摄像机姿态变化完成邻近点搜索,再利用基于点积的相似度度量完成初匹配。通过统计特征点距离误差快速剔除误匹配点,获取最终同名点集。实验表明,该方法的单个特征点匹配耗时仅为SURF算法的23.4%,匹配正确率比SURF算法高9.7个百分点,且对光照变化、噪声干扰有较强的鲁棒性,能够满足增强现实系统对图像匹配算法的速度快、精度高和抗干扰能力强等要求。