如何处理海量语音数据是语音识别应用的一个重要问题,采用并行化计算取代传统的单机处理,如果并行调度控制不当,最终合并的结果在合并顺序上就会出现错误,并且数据切分不合理还会造成语义连贯性的丢失导致准确率的降低,文件片段在网络上传输的时间开销也需要考虑,针对上述问题,提出了一种基于Hadoop的语音识别系统,借助其分布式文件系统HDFS与MapReduce并行算法解决文件片段传输与并行调度控制的问题,同时引入静音检测算法合理地处理文件切分,通过实验验证了该系统的有效性。