论文研究基于最小二乘法的冗余信息数据融合算法实现.pdf
为了有效融合多传感器冗余系统量测信息,使状态的估计值更接近于状态的真实值,实现高精度和高可靠性的状态估计,采取了基于最优加权的最小二乘算法、有限窗加权的最小二乘算法和自学习加权最小二乘算法,分别对多传感器实测数据进行融合处理,融合后数据的方差大幅度降低,估计精度显著提高。并与传统的最小二乘算法进行了仿真对比,结果表明,这3种方法较最小二乘算法融合精度更高,其中,自学习加权的最小二乘融合算法既考虑了历史数据的作用,又考虑了环境噪声和新的采样值的影响,增强了对噪声检测的敏感性,估计效果较好。