本书主要讲述神经网络的基本概念,介绍实用的网络模型、学习规则和训练方法。全书分19章,内容涵盖神经元模型和网络结构、感知机学习规则、有监督的Hebb学习、Widrow—Hoff学习算法、反向传播算法及其变形、联想学习、竞争网络、Grossberg网络、自适应谐振理论和Hopfield网络。书中注重对数学分析方法和性能优化的讨论,强调神经网络在模式识别、信号处理以及控制系统等实际工程问题中的应用。同时本书包含大量例题、习题,并配有基于MATLAB软件包的“神经网络设计演示”程序。本书可以作为大学高年级本科生或一年级研究生的神经网络课程教材,也可供从事相关研究工作的科技人员参考。