SAR图像的分类是实现SAR图像自动理解与解译的关键步骤,而纹理是各种地表的固有属性,为SAR图像的分类提供了大量有用的信息,尤其对于单波段、单极化的SAR图像,纹理信息就显得格外重要.然而,不同纹理特征对SAR图像中不同地表结构内在属性的刻画能力并不一致.如何将不同纹理特征结合起来,以获得应用范围更广且分类效果更好的SAR图像分类方法,是当前SAR图像处理研究中的一个热点问题.文章将商空间粒度计算引入SAR图像的分类中,结合SAR图像特性,提出了一种基于粒度合成理论的SAR图像分类方法.该方法首先利用具有良好推广能力的支撑矢量机基于不同纹理特征获得SAR图像的不同分类结果,并认为这些分类结果构成不同的商空间,再根据粒度合成理论