研究了一种全新的基于自适应混沌变异粒子群的路径规划算法。该方法首先进行环境建模,利用改进的粒子群算法获得一条较优路径。在改进的粒子算法中为防止早收敛,加入自适应混沌变异操作,在加强算法局部搜索能力的同时保证搜索过程中种群的多样性。仿真实验表明,即使在复杂的环境下,利用该算法也可以规划出一条全局较优路径,且能安全避碰。