基于多重集合,对Z.Pawlak粗集意义下的概率粗糙集模型的论域进行了扩展,提出了基于多重集的概率粗糙集模型,即多重概率粗糙集模型,给出了该模型的完整定义、相关定理和重要性质,其中包括多重论域定义、多重概率粗糙近似集的定义及其各种性质的证明、多重概率粗糙集的近似精度定义、可定义集与属性约简的定义、多重集意义下的粗糙近似算子之间的关系及其与Z.Pawlak意义下的粗糙近似算子之间的关系等。多重概率粗糙集可充分反映知识颗粒间的重叠性,对象的重要度差别及其多态性,这样有利于用粗糙集理论从保存在关系数据库中的具有一对多、多对多依赖性的且具有不完全性或存在统计性的数据中挖掘知识。