属性约简是粗糙集理论进行知识获取的核心问题之一。根据属性相似度与知识粒度的一致性,通过条件属性与决策属性以及条件属性之间的相似度度量,提出了一种基于知识粒度的启发式属性约简算法。根据条件属性与决策属性的相似度对条件属性进行降序排列,根据条件属性之间的相似度度量选择重要的属性,从而得到约简集合。理论分析与实验结果表明,该算法具有较高的运行效率和较好的约简效果。